DPREP: ПОДГОТОВКА ДАННЫХ ДЛЯ DATA MINING НА PYTHON

Практический курс для статистиков, начинающих Data Scientist’ов, архитекторов Data Lake, аналитиков и инженеров данных по подготовке Big Data к машинному обучению, моделированию и интеллектуальному анализу на примере использования Apache Spark и Python. Программа курса: www.bigdataschool.ru/courses/dprep-...

ИТ и интернет 18+

ПРОГРАММА КУРСА «ПОДГОТОВКА ДАННЫХ ДЛЯ DATA MINING НА PYTHON»

1. ЗНАКОМСТВО С БИБЛИОТЕКАМИ ЯЗЫКА PYTHON ДЛЯ ОБРАБОТКИ И ВИЗУАЛИЗАЦИИ ДАННЫХ.

Цель: познакомить участников с основными библиотеками языка Python и сформировать начальные навыки по работе с данными в рассматриваемых библиотеках.

Теоретическая часть:

  • изучение возможностей библиотек языка Python для обработки (Pandas, NumPy, SciPy, Sklearn) и визуализации (matplotlib, seaborn) данных.
  • обзор основных приемов по работе с данными:
    • первичный анализ данных
    • получение описательных статистик
    • изменение типа данных
    • построение сводных таблиц
    • визуализация статистических характеристик данных (гистограммы, графики плотностей распределений, тепловые карты, «ящики с усами» и «виолончели»)

Практическая часть: решение практических задач обработки и визуализации данных на примере табличных данных.

2. БИБЛИОТЕКИ PYTHON В КОРРЕКТИРОВАНИИ ТИПИЧНЫХ ОСОБЕННОСТЕЙ В ДАННЫХ.

Цель: познакомить участников с основными особенностями в данных, с которыми приходится сталкиваться в реальных задачах, и научить успешно их корректировать с использованием библиотек языка Python. Продемонстрировать применение указанных подходов в случае промышленного варианта подготовки данных на примере использования Apache Spark (PySpark).

Теоретическая часть:

  • обзор типичных особенностей в данных и подходов к их корректировке:
    • отсутствующие значения
    • выбросы
    • дубликаты
  • подготовка данных для использования в алгоритмах машинного обучения:
    • нормализация числовых данных
    • преобразование категориальных значений
    • работа с текстовыми данными

Практическая часть: подготовка «сырых» данных для использования в алгоритме машинного обучения с подробным анализом влияния каждой особенности датасета на конечный результат работы алгоритма.

3. ИТОГОВЫЙ ПРОЕКТ

Цель: закрепить полученные слушателями курса знаний по подготовке данных.

Теоретическая часть: краткий обзор пройденного материала со ссылками на рабочие блокноты, в которых решалась та или иная задача подготовки данных.

Практическая часть: самостоятельное решение задачи подготовки датасета для машинного обучения с использованием собственной базы данных или на лабораторном наборе от организаторов курса. Итоговый разбор работ слушателей курса.

Поделиться:

497 дней назад
10 июля 10:00 — 13 июля 2023 18:00

Событие пройдет онлайн

Уже есть билет
Ссылка на онлайн-событие рассылается за час до его начала.
Получить ссылку или сделать возврат

Поделиться:

Связь с организатором

Напоминаем, что для того чтобы сделать возврат организатору можно не писать.

На этот адрес придёт ответ от организатора.

Подпишитесь на рассылку организатора

Возврат билета

Если вы хотите вернуть билеты, вы можете сделать это по ссылке из письма с билетами или оформить запрос организатору в вашем  личном кабинете.

Подробнее о возврате билетов